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Harbour oscillations generated by shear flow 

By A. L. FABRIKANT 
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 

Pasadena, CA 91109, IJSA 

(Received 21 September 1993 and in revised form 2 August 1994) 

A new mechanism that could be responsible for excitation of long-period oscillations 
in partially enclosed harbours is discussed. This mechanism is based on the interaction 
between a shear flow and the harbour-basin natural mode and does not suppose any 
external exciting forces caused by wind waves, tsunami, etc. The growth rate of 
harbour oscillations is found in terms of a plane-wave reflection coefficient integrated 
on the wavenumber spectrum of the oscillating outflow field near the harbour entrance. 
Analytical considerations for simple shear flows (vortex sheet and jet) show that the 
growth rate changes its sign depending on the ratio of oscillation frequency to flow 
speed. 

1. Introduction 
Strong long-period surface oscillations in harbours cause problems for ships 

mooring, loading or unloading. Their origin is connected with shallow-water modes 
inside the harbour basin. The harbour may be considered as a surface-wave resonator 
with certain oscillation modes and eigenfrequencies. If the harbour entrance is narrow 
enough the fundamental (Helmholtz) mode with the lowest frequency may be excited. 
This mode was studied originally by Miles & Munk (1961). The structure and 
frequency of higher modes are sensitive to the harbour geometrical form (see a 
comprehensive study in Mei 1989). 

But the excitation mechanism of surface oscillations on these modes is still an open 
question. Some external oscillating forces have been investigated as possible sources of 
harbour oscillations. These forces may appear owing to low-frequency waves incident 
on a harbour entrance, for example tsunamis (Miles 1974; Gilmour 1990; Zelt & 
Raichlen 1990) or tides (Abrol 1990). Another plausible exciting force may originate 
in long waves by storm wave trains (Okihiro, Guza & Seymour 1993). Free long waves 
may be generated by the refraction of wave trains on bottom inhomogeneities (Mei & 
Benmoussa 1984; Liu 1989) or on shear currents (Liu, Dingemans & Kostense 1990) 
and also by the diffraction by such objects as a vertical cylinder (Zhou & Liu 1987). The 
nonlinear mechanism of harbour excitation by an induced long wave accompanying a 
wind-wave train has been also investigated (Bowers 1977; Mei & Agnon 1989; Wu & 
Liu 1990). 

All these studies are based on the assumption that a harbour may be considered 
simply as a resonant element amplifying external pulsations. Here an attempt is made 
to explain the occurrence of harbour oscillations without any significant external forces 
as a result of instability due to the interaction of harbour oscillations with a sea current. 
It is supposed that the current with a horizontal shear goes along the coast near the 
harbour entrance. This is a typical situation for many harbours which are located at 
the ocean shore. The near-coast currents may be stationary, seasonal, tidal or may 
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appear accidentally for some other reason. But even if the current is periodic, for 
example caused by tides, edge waves or any other wave mode with period low in 
comparison with the harbour oscillation period, we may consider the flow to a first 
approximation as stationary and investigate oscillations on a stationary background. 

In the following section we consider an analytical model of harbour oscillations 
interacting with a shear flow near the harbour entrance. A perturbation technique is 
developed to calculate the reflection coefficient of a surface shallow-water wave 
propagating in a channel with an open end. In $3 reflection coefficients of a plane 
surface wave from shear flows are summarized and their relevance to the harbour 
oscillation growth rate is considered on the basis of the causality principle. 
Approximate analytical expressions for the growth rate are found in $4 for simple flow 
velocity profiles, i.e. for a vortex sheet and a thin jet. Finally in $ 5  conclusions are 
drawn summarizing the results and discussing their physical relevance. 

2. Reflection of a waveguide fundamental mode from the open end of a 
channel 

The shallow-water approximation is typically used for long-scale wave modes in a 
basin. Two-dimensional fluid flow with velocity I/ satisfies in this approximation the 
following equations (Mei 1989): 

a V / a t + ( V - V )  V+gVh = 0, 
a h p t  + v .  (h v) = 0. 

These equations are the same as the two-dimensional Euler equations for 
compressible fluid. This well-known analogy allows us to consider shallow-water 
surface waves in a basin like sound waves in two-dimensional acoustic resonator. The 
phase speed of shallow-water waves c = (gH)l/' (where H is the undisturbed basin 
depth) plays the role of sound speed (Landau & Lifshits 1987). 

Below we use a simple model of the harbour basin: a straight channel considered as 
a waveguide for surface waves which is orthogonal to the coast line (see figure 1). The 
fluid layer depth His  homogeneous both inside the channel and in the sea around. This 
waveguide may be considered as the end of an open surface-wave rectangular resonator 
(figure l a )  or the throat of a Helmholtz resonator (figure lb). We shall study the 
waveguide fundamental wave coming from inside the channel and reflecting at the 
open end. On interacting with a coastal flow near the open end this wave mode may 
be amplified thus bringing additional wave energy inside the harbour resonator and 
exciting harbour oscillations. Amplification of harbour oscillations by a shear flow 
may be considered in terms of the influence of the flow on the waveguide wave 
reflection coefficient at the open end. We shall here find this coefficient analytically and 
study a general mechanism of flow interaction with surface oscillations in a semi-closed 
cavity. 

In an area with no stationary flows, perturbations of velocity u = (u, v) and surface 
elevation 7 satisfy linearized equations following from (1) : 

For oscillations of amplitude eP" at a given frequency w we can derive from (2) the 
Helmholtz equation for the surface elevation : 

A7 + (u2 /c2 )  7 = 0. (3) 
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FIGURE 1. Harbour models : (a) rectilinear channel, (b) Helmholtz surface-wave resonator. 

The velocity field is connected with the surface elevation field by the formula 

u = (g/iw)Vy. (4) 

Equation (3) must be solved in a semi-closed domain without any flow and with 
boundary conditions at the domain walls u-n  = 0 (where the vector n is orthogonal to 
the wall). Also, some impedance boundary conditions must be imposed at an 
additional surface closing the domain. Below we consider this boundary-value problem 
for a particular geometry of the harbour entrance (see figure 2). 

If we assume that the waveguide cross-section has a width a small in comparison 
with the wavelength A, 

( 5 )  

then only the fundamental wave mode can propagate in the waveguide. For this mode 
the velocity oscillations inside the channel far enough from the open end are directed 
along the channel axis so that u = (0, v). We can find the velocity and surface elevation 
fields for the fundamental mode from (3): 

a < h = 2nc/w, 

where k, = w / c  and velocity and surface elevation amplitudes are connected by the 
relation 

which follows from (4). 
Under condition ( 5 )  reflection of the fundamental wave is almost total and the 

reflection coefficient R z 1. The oscillating field in a channel is close to a standing wave 
with a velocity maximum and a node of surface elevation at the open end (Mei 1989). 

A deviation from the purely standing wave may appear for at least two different 
reasons. First, some wave energy radiates from the open end, reducing the wave 
reflection, so the value of reflection coefficient IRI < 1. This effect, however, is of order 
(a/h)2 and we neglect it below, assuming R = 1. Another progressive wave perturbation 
in a waveguide appears owing to the fundamental wave interaction with the flow 
outside the channel and is determined by the value of AR. 

A complicated diffraction problem must be solved to find the total value of the 
reflection coefficient at the open end of a waveguide with a flow. We restrict ourselves 
to the much simpler problem of finding a solution when the flow influence is small and 
IARI < 1. This approximation may be valid if the flow is far enough from the channel 

To = Hvo/c ( 7 )  
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FIGURE 2 .  Shear flow near the open end of a shallow-water waveguide. The dashed line marks the 
integration path. 

or if the flow is a very narrow jet. In both cases we may calculate the excitation of a 
waveguide by surface wave perturbations penetrating from the open end of the channel 
into the outer ocean and partially reflected from the flow, considering those reflected 
perturbations as an external force and neglecting multiple reflection between the flow 
and the waveguide. 

To find the approximate reflection coefficient we use the integral relation 

confined to the surface elevation field v(O)(o, r)  without a shear flow and a perturbation 
f ( o , r )  reflected by a flow. The asterisk in (8) stands for complex conjugate and the 
integral is along a surface S closing a domain with no stationary flow inside. The 
relation (8) follows from Green’s formula for (3). Note that for two-dimensional fields 
the surface S essentially represents a contour in the (x, y)-plane. 

We choose this contour, as shown in figure 2, made up of four different parts. The 
first one is a contour S,  across the waveguide far enough from its open end. The second 
contour S,  is a straight line dividing the harbour and the shear flow. It runs parallel 
to the shore (and to a shear flow at a distance L from it) outside the channel between 
its entrance and the flow. As this contour is supposed to go into an area with no steady 
flows we assume that it is close enough to the shore at a distance L, 6 L. The third 
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contour S,  runs along the shore. Finally the contour S, is a closing arc with radius 
R, + 00. Integrating along the whole contour S one may connect the solution (6) inside 
the channel with a wave field outside. 

We consider the shore line as a rigid boundary for shallow-water waves. A boundary 
condition av/an = 0 must be fulfilled there and so the integral (8) along the contour S,  
equals zero. This integral also vanishes at a closing contour S, due to the Sommerfeld 
radiation condition. Thus the sum of integrals along S,  and S, equals to zero. 

The value of the integral (8) along the waveguide cross-section S, may be found from 
(6) which represents the sum of v ( O )  + 11". Taking into account (7) we have 

Finally we express the integral along the dividing contour S, in terms of Fourier 
transforms of q ( O )  and f :  

where K = (k2-wz/c2)1/2 and ReK > 0. Substitution (10) into (8) gives us the integral 
along S,  in the following form: 

Now equating (9) and (11) we obtain the flow correction to the channel wave 
reflection coefficient 

AR = ic3 rm K H ~ ) * G " ~  dk. 
2nawH21v012 

Thus, we have expressed the reflection coefficient in terms of Fourier amplitudes of 
surface elevation. The next step is to connect the near-shore oscillation field with the 
shear flow influence. 

The amplitudes H r ' + f i k  of surface elevation harmonics incident on a shear flow 
and the amplitudes Gk of reflected harmonics are connected by the reflection coefficient 

r (o ,  k) = 
H p  + H,' (13) 

An important approximation that we use below is based on a small value of the 
reflection coefficient for perturbations reflecting from the flow. This also results in a 
small value of AR in (6). To a first-order approximation we may write 

6, = r H r ) .  (14) 

Thus, using this approximation, we take into account only one-step wave scattering at 
a flow, neglecting reverberation - multiple reflection between the flow and the coast. 

We also use the connection between velocity and surface elevation amplitudes, 
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FIGURE 3. Streamlines of a potential flow from a channel open end. 

that follows from (4). Here vp) is the amplitude of the y-component of the velocity 
at the level y = L, taken to a zero-order approximation when the flow influence is 
neglected. 

Substituting (14) and (1 5 )  into (12) we have 

dk 
2TCK 

Here W = @)/2u, aI2 is the power spectrum of the y-component of the velocity at y = 0 
for some potential two-dimensional flow of inviscid incompressible fluid. It is the flow 
from a channel with unit cross-section if the values of the velocity inside the channel 
is unity (see figure 3). This field has a complicated structure (see Lamb 1932) but at 
distances r 2 L, 9 a it is an isotropic flow whose radial and angular components are 

where r and # are polar coordinates. The y-component of the velocity is 

for this flow and so to a first approximation with respect to the small parameter a/L 
we may use the formula 

3. Reflection from the flow 
Formula (16) connects the waveguide fundamental wave reflection coefficient at the 

open end with a plane wave reflection coefficient r(w, k) at a shear flow. To find the 
latter coefficient we consider the reflection problem of a plane wave incident on a shear 
flow which is located in the layer Iy - LI < 1. For small-amplitude shallow-water 
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waves in a flow with the velocity profile V = (U( y), 0,O) we may derive from (1) the 
following linearized equations : 

au au au a7 
-+u-+v-+g--0,  
at  ax ax ax 

a v  av  a7 
-+u-+g- = 0, 
at ax ay 

$ + H ( g + g )  = 0. 

If the plane wave comes from the half-plane (y- L) < 0, we have the following 
boundary conditions at a distance which is large in comparison with the flow size I :  

1 (Z?+ + - 
= e-iwt+ikx ( e$ky + r eciKY), 

7(Z?;L ; 

= 7ne-iwt+ikx q eiKY. 

We have, therefore, a boundary value problem (20), (21) that is the same as for 
sound waves reflecting from a shear flow. So we may use any of the solutions already 
found for aeroacoustical problems of this type. Take, for example, the pioneering 
Miles-Ribner results obtained for the problem of sound reflection at a vortex sheet 
(Miles 1957a; Ribner 1957). If U / c  < 0 and k % w/c we may put K = (k2)lI2 in the 
reflection coefficient. The Miles-Ribner reflection coefficient for a wave incident on 
vortex sheet located at y = L may be written in this approximation as 

For a ‘mono-speed’ jet comprising two vortex sheets with the velocity profile 

the reflection coefficient is, in the same approximation, 

[(w -kUJ4 - w4] tanh (k1/2) e-2KL r =  
2w2(w-kU,J2+ [ (w-kUJ4 +w4] tanh(k1/2) 

There are also some analytical expressions for the coefficient r(w, k )  which have been 
found for other shear flows (Graham & Graham 1969). Those flows which have 
distributed vorticity may determine a complex reflection coefficient that corresponds to 
plane wave amplification or dissipation (Fabrikant 1976; Andronov & Fabrikant 
1980~). Then integrating (16) along the wavenumber spectrum of the near field around 
the harbour entrance we may find the total wave energy input where different spatial 
harmonics contribute. This amplification mechanism originates from a wave-flow 
interaction in critical layers. But this is a relatively weak generation mechanism as only 
a small part of the flow (critical layer) participates in the interaction with the wave. 

For resonator modes a stronger interaction may be realized. The mechanism of such 
an interaction is based on the connection of a waveguide mode with the flow as a 
whole, i.e. with flow oscillatory eigenmodes. Note that there are no critical layers for 
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FIGURE 4. Integration contours for the reflection coefficients: (a) vortex sheet, (b)  jet flow (k ,  is a 
pole for the symmetric wave mode of the jet and k,, is a pole for the antisymmetric mode). 

a vortex sheet or jet with a singular vorticity field and so the reflection coefficient of a 
plane wave does not contain any imaginary part Im ~ ( w ,  k) = 0. However, the 
interaction mechanism with flow eigenmodes still works for these flows. Below we 
analyse (16) to understand how this mechanism works. 

The spectlum of eigenmodes in a shear flow is determined by the poles of the 
reflection coefficient ~ ( w ,  k). As a rule, natural oscillations of an inviscid flow are not 
neutral but unstable.? Then, for real-w, poles of the reflection coefficient are located 
away from the real axis in the complex plane k. That is why the integral (16) should 
be taken not only along the real axis but probably along some more complicated path 
in the complex plane also. 

The proper integration path may be found from the initial value problem that takes 
into account a ‘switch-on’ process for the waveguide oscillation mode. We use the 
Laplace method and investigate complex values of w that are high in the upper half- 
plane of the complex frequency Im w > 0. In that case all poles of the integrand in (16) 
are located in the upper half-plane of complex k, that is Im k > 0. Accordingly, the 
integration in (16) may then be carried out along the real axis of k. 

When the solution is continued analytically into the lower half-plane of complex w, 
the poles of the integrand in (16) move in the complex k-plane towards the real axis and 
may intersect it. To be sure that formula (16) is an analytical continuation of the 
function AR corresponding to large positive Im w ,  we have to deform the integration 
path in such a way as to leave poles above it. Also, the path must not intersect the cuts 
of the function K(k) specified by the condition Re K > 0 which guarantees that 7 and v 
will be finite as y + + 00. As a result we obtain a path consisting of the real axis of k 
supplemented by loops bypassing all the poles of the integrand in the lower complex 
half-plane of k - see figure 4. 

The same path could obviously be obtained for a real-valued w if we proceeded from 
boundary conditions at x+k co. For a flow from x = - co to x = + co surface 
elevation and velocity perturbations must decay as x = - co but may grow as x = + 00 

due to the flow instability. Functions of that kind are represented by integrals in the 
complex k-plane along contours of the indicated type. Poles of ~ ( w ,  k) which are inside 
the path loops in figure 4 correspond to unstable natural modes of the flow. 

These considerations are exactly analogous to those which have been used to derive 
the Lin bypass rule in the theory of hydrodynamic instability of an ideal fluid (Case 
1960) and to derive the Landau bypass rule in plasma wave theory (Landau 1965). The 

t A comprehensive investigation of the vortex sheet eigenmodes in a compressible fluid is 
contained in Miles (1958) and Landau & Lifshits (1987). 
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only difference lies in the fact that a displacement of the integration path in these 
situations is, as a rule, very slight and simply corresponds to the rule of bypassing a 
pole on the real axis. In our situation, on the other hand, we find below that the 
displacement of the integration path may appear to be considerable because it is 
sometimes necessary to bypass poles far from the real axis. Note that such a path of 
integration in the complex k-plane is involved in studies of sources radiating near a 
vortex sheet (Jones & Morgan 1972). 

4. Harbour self-excitation 
Formula (16) with the integration path discussed above gives us to a first 

approximation the flow-induced correction A R  to the reflection coefficient of the 
waveguide fundamental mode from an open end. The reflection determines damping 
or growth for oscillations in a resonator incorporating the waveguide as a constituent 
part (figure 1) .  To find the oscillation growth rate for a rectangular harbour (figure 1 a) 
we proceed from wave energy considerations for a fundamental mode in a waveguide. 

The density of wave energy per unit area for a shallow-water wave may be written 
in the form (see Mei 1989) 

where angle brackets denote averaging over the wave period. Substituting the 
fundamental wave solution (6) into (25) we find the total wave energy in a channel, 
which is the sum of the energies of two counterpropagating waves: 

e = Pg(Y2h (25) 

E = ~pgaL,lyo12(1 + IR+AR12), (26) 

where Lo is the channel length. 
The wave energy flux for a fundamental wave mode propagating with a speed c is 

S = ace. (27) 

The difference between wave energy fluxes for a wave reflected from the channel 
entrance and for an incident wave is therefore 

AS = +acpg17,12(1R+AR12- 1). (28) 

Assuming that the undisturbed reflection coefficient R = 1 we can find to a first 
approximation the resonator oscillations growth rate in the form 

AS w 
2E 4nn 

y = - = -ReAR, 

where n is the number of wavelengths that fit into the channel. 
Thus a flow amplifies the reflected wave if y > 0, i.e. 

Re A R  > 0. (30) 

Amplification of the reflected wave by a flow may cause excitation of harbour 
oscillations. Substituting (16) into (29) we may write the oscillation growth rate in the 
form 

where the integration must be along a path bypassing all poles of the coefficient r(w, k)  
in the lower half-plane of complex k as shown in figure 4. 
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FIGURE 5. Growth rate 7 = y/y,,, of %harbour oscillations generated by a vortex sheet as a 
function of the velocity U = U0/2wL.  Here y,,, = 02a/(nnc2/2) .  

We shall analyse here the growth rate y for a vortex sheet and a slender jet with 
piecewise velocity. The plane wave reflection coefficient r(w, k )  is real on the real k-axis 
for these simple flows with ' mono-speed ' velocity profiles. Therefore, integration along 
the real axis in (31) does not contribute to the growth rate. The latter is determined 
solely by the residues at poles on the lower half-plane of complex k which correspond 
to unstable flow eigenmodes. 

It has been shown by Andronov & Fabrikant (1980~) that a small but finite width 
of a shear layer induces a small imaginary component Im ~ ( w ,  k)  in the reflection 
coefficient for real values of w and k and also slightly shifts the poles of r(w, k ) .  These 
effects create small variations of the growth rate, which we ignore here. 

For a vortex sheet the plane wave reflection coefficient (22)  has only one pole, 

k = k,  = (1 -i)w/U,,, (32)  
in the lower half-plane of k (Betchov & Criminale 1967). Consequently, drawing the 
integrating path as in figure 4(a) and invoking (19) we obtain 

It is evident from (33) that the sign and magnitude of the oscillation growth rate in 
the channel are determined by the value of the parameter w L /  U,. The sign alternation 
of the function y arises from the nature of the flow-harbour feedback. The open end 
of the channel excites a flow disturbance corresponding to Kelvin-Helmholtz instability 
of the vortex sheet. This disturbance in turn forces harbour oscillations if it is in the 
appropriate phase. The phase of the flow disturbance 2wL/U,, depends on the distance 
from the vortex sheet because the flow perturbation wavenumber (32) has an imaginary 
component for real w.  

The growth rate dependence on the vortex sheet velocity is shown in figure 5. We can 
see here that the growth rate reaches the maximum value 

when the flow velocity U,, = 0.3 x 2wL. 
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We now consider another shear flow that yields a small value of AR so that the 
approximate expression (14) may be used. It is a slender jet (of width 1)  with the 
velocity profile (23). The reflection coefficient Y ( W ,  k)  for this jet (see (24)) has two poles 
in the lower half-plane of the complex variable k, corresponding to the symmetric and 

for this flow 
we can find 

antisymmetric natural modes of the jet. The contour of integration in (3 1 
is shown in figure 4(b). Assuming the small parameter wL/Uo < 1 
wavenumbers corresponding to these poles (Betchov & Criminale 1971 

k =--(-I d 3 - i  o 4U0 ‘ I 3  . j  
2 uo 01 as 

(35) 

If the parameter ( ~ W L / U ~ ) ( ~ U , , / O ~ ) ~ ’ ~  9 1, the contribution of the pole k,, to the 
integral (31) is exponentially small so the latter integral is determined solely by the 
symmetric mode of a slender jet. Then the growth rate for harbour oscillations equals 

to a first approximation with respect to the small parameter wl/Uo 
We can see from (36) that contributions to the growth rate of harbour oscillations 

are provided by jet perturbation harmonics that are synchronous with the jet velocity. 
Note that the spectrum shape of the velocity oscillations at the open end is important 
here. The growth rate depends on whether the spectrum increases or decreases at the 
synchronous wavenumber k, = o /Uo .  If the spectrum increases with k, then the jet 
amplifies the oscillations, giving energy to them. 

The latter result has a simple explanation: if the flow goes through the localized near 
field of a monopole oscillating source, that is an open end of a channel, the flow 
particles interact both with oscillation harmonics that lag the flow, thus slowing it, and 
with harmonics which move faster than the flow, thus accelerating the flow particles. 
If the power spectrum increases with k the slender jet interacts more strongly with 
oscillation harmonics that lag it, as those harmonics have a larger power spectrum. 

It is likely that the derivative of the oscillation spatial spectrum has the same role 
here as the second derivative of the velocity profile in Miles’ theory of wind-wave 
generation (Miles 1957b). Wind waves are amplified by a shear flow when the second 
derivative of the velocity is negative. There are more particles moving faster than a 
wave in this case and so the wave takes more energy from these particles than it gives 
energy to lagging particles (see more detailed explanation in Andronov & Fabrikant 
1 980 a). 

1. 

Analysing (36) we obtain the growth rate for a far jet when L + a: 

In this case the slender jet attenuates harbour oscillations. 
To find the growth rate for a jet close enough to the harbour entrance we have to 

know the velocity power spectrum W(k). The explicit form of the oscillation velocity 
distribution just near the channel entrance is unknown. It is reasonably clear, however, 
that the space scale of the variation of the oscillatory velocity along the x-axis is the 
width of the channel a. Consequently, the characteristic parameter governing the 
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FIGURE 6. Grcwth rate 9 = y/y,,, of harbour oscillations generated by a jet flow versus the jet 
velocity U = U,,/wa. Here y,,, = w21/(47cnc). (a)  L = 0,  (b) 2L/a = 0.1, ( c )  2L/a = 0.3.  

excitation must be the transit angle 0 = oa/Uo.  This parameter is a measure of a wave 
phase change for the jet natural wave mode during its propagation past the harbour 
entrance. In particular, if we adopt the following elementary model for the oscillatory 
velocity amplitude : 
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then the spectrum derivative (a W/ak),=,,,o and the growth rate 

oscillate with the variation of 8, changing sign as 8 varies by an amount of order 7c - 
see figure 6.  

For large values of the jet velocity, when 8 2 7 ,  oscillations are attenuated by the jet. 
The growth rate has some local maxima for smaller values of the parameter 8, but their 
value decreases rapidly as the distance L grows. 

Note here that, as the growth rate is an oscillating function of the harbour size and 
the jet speed, it appears very sensitive to the jet and harbour parameters. That may 
result in a strong variability of the harbour oscillation levels. 

An estimation of the growth rate for a harbour with depth H = 20 m and entrance 
width a = 300 m if the jet scale and harbour-flow distance are 1/2 = L = 15 m shows 
that harbour oscillations with period T = 27c/o = 5 min begin to grow for flow speed 
U,, z 0.8 m s-l. The value of the growth rate is of order y z s-l. Accordingly, the 
time of oscillation growth is about 2.7 hours. 

5 .  Conclusions 
The mechanism of instability described above is different from any of mechanisms 

considered previously for harbour excitation. The harbour oscillations arise as a result 
of linear instability in a system of coupled surface-wave resonator and shear flow. 

The relation between this mechanism and the external forcing mechanisms studied 
before is the same as the relation between the two mechanisms of wind wave generation 
found by Miles (1957b) and Phillips (1977). The Miles’ mechanism is based on wave 
amplification due to their interaction with a flow while the Phillips’ mechanism is 
simply wave generation by an external oscillating force. The generation of harbour 
oscillations described here is also based on wave-flow interaction resulting in 
oscillation instability. But the physical nature of instability is different from the Miles’ 
mechanism: it is not resonance wave interaction with a flow in a critical layer. Here 
harbour oscillations interact with the flow as a whole, not only with a narrow critical 
layer. This instability is based on a feedback mechanism confining harbour natural 
modes and eigenmodes of the flow. Oscillating velocity around the open end of a 
harbour excites natural wave modes in a flow. These waves propagate along the flow 
going through the near field of the channel entrance. They carry both velocity and 
surface-elevation oscillating perturbations with phase shifting along the distance. If the 
wave phase shift, arising during wave propagation through the near field, has an 
appropriate value, the surface-elevation perturbation excites the harbour entrance thus 
closing the feedback loop. 

Note that a similar mechanism has already been proposed to explain the excitation 
of sound in whistles, flutes and organ pipes (Coltman 1968; Elder 1978; Andronov & 
Fabrikant 1980b). 

An important question arising from the analysis of the linear instability is the 
problem of nonlinear saturation of that instability. There are several mechanisms of 
nonlinear dissipation for shallow-water waves inside a harbour, for example wave 
breaking on a shore or turbulent dissipation in the bottom boundary layer. Now we 
estimate the nonlinear saturation for one of the most important mechanisms: energy 
loss due to separation of the oscillating flow at the channel entrance (Mei 1989). We 
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use here the hydraulic formula for a surface-elevation jump in a quasi-static flow 
through a slot: 

r 

where the dimensionless empirical coefficient f depends on the geometrical form of the 
entrance and is of order unity. It allows us to find an energy loss averaged over a wave 
period 

f 
2g 

dE H+v 

Q = -dt = ( a s ,  pgzdza) = 2Hapg-(a21al). 

For sinusoidal velocity oscillations we have from (4 1) 

8 
Q = -pa: f a .  37c 

In the equilibrium state the value of the energy loss equals the gain from instability 
so that 

Q = yE. (43) 
Now we may substitute into (43) the formula (42) and the expression (26) for the 

total wave energy E. Assuming the value f = 1 and taking into account the connection 
(7) between amplitudes of velocity and elevation in the fundamental wave mode we find 
the amplitude of the surface elevation in the form 

3x HL,  
4 c  To = --y, (44) 

where the growth rate y can be found from (33) or (39) and the oscillations are 
considered on the quarter-wave mode (n = i). For a jet flow with the parameters 
discussed above we have from (44) the value of the surface elevation yo = 0.8 m and the 
corresponding value of the velocity amplitude in the harbour entrance is 0.5 m s-'. 
These values are comparable with amplitudes of resonant oscillations excited by 
external forces in harbours. Very strong incident waves like, for example, tsunamis 
may excite larger resonant oscillations. But the flow excitation mechanism may be 
responsible for the occurrence of harbour oscillations in the absence of any waves 
incident on the harbour entrance. 

Note in conclusion that the evaluations made above are very rough, showing only 
typical orders of the evaluated parameters. More precise calculations appropriate for 
engineering applications must include consideration of a more realistic flow profile as 
well as the complicated topography of a real harbour which affects the eigenmode 
frequency and space amplitude distribution. As for the physical nature of harbour 
oscillations excited by shear flows, there is also another excitation mechanism which 
has not been considered yet: external waves interacting with a coastal flow could 
produce intensive oscillations in a harbour. That is, however, a more complex problem 
which deserves separate consideration. 

The research described in this paper was carried out in the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 
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